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The overall pattern of normal modes of parallel flow of inviscid stratified fluid 
is examined. For a given flow and wavenumber the modes are divided into five 
classes, some of which may be empty: (i) a finite class of non-singular unstable 
modes; (ii) a conjugate finite class of non-singular damped stable modes; 
(iii) a finite class of singular stable modes, each of these having a branch point 
and being the limit of unstable modes; (iv) a discrete class of modified internal 
gravity waves, these being non-singular stable modes (if the density decreases 
with height everywhere); (v) a continuous class of singular stable modes. The 
modified internal gravity waves are described asymptotically for large values 
of the Richardson number. These asymptotic results are related to and extended 
by numerical calculations for a sinusoidal basic velocity profile and a Bickley 
jet. The wave speeds for small values of the Richardson number are found to 
depend only upon the local behaviour of the mean flow near an overall simple 
maximum or minimum of the velocity profile. Finally some difficulties in the 
use of the Howard formula for perturbation at a curve of marginal stability are 
elucidated. 

1. Introduction 
Of the scores of papers on the linear instability of plane parallel flow of a 

stratified fluid, none seems to have given more than an occasional stable mode 
and none seems to have treated the overall pattern of the modes (see the 
surveys of Drazin & Howard 1966; Howard & Maslowe 1973). Yet it is well 
known that there is an infinity of stable modes, that they are essential to solve 
initial-value problems, and that all modes are stable when the local Richardson 
number is nowhere less than one quarter. Further, stable modes in the absence 
of a basic flow, namely internal gravity waves, have been studied extensively (see 
the books of Yih 1965; Turner 1973), and are recognized as important in many 
applications, notably to meteorology and oceanography. Yet in the phenomena 
to which the theory of internal gravity waves is applied there is frequently 
substantial shear in the mean flow. This shear seems to  have been recognized in 
work on forced oscillations, that is to say on propagation of internal gravity waves 
from a source, but not in work on the closely related free oscillations, that is to 
say on the normal modes. 
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All these problems are governed by what is called the Taylor-Goldsteint 
equation, namely 

( u - c )  (&’ - a”) - Urr$ + JN2$/( u - c)  = 0, (1) 

where U ( z )  is the dimensionless velocity of the basic flow in the horizontal 
x direction, N(z )  is the dimensionless local Brunt-Vaisala frequency, J is the 
overall Richardson number, primes denote differentiations with respect to the 
dimensionless height z, and the stream function of the normal mode of disturbance 
is taken as #(z)  exp (ia(x - ct)}. The complex eigenvalue c and eigenfunction 9 
are further determined by the boundary conditions 

q5 = 0 a t  z = z1,z2, (2) 

which represent the vanishing of the vertical velocity on rigid horizontal walls. 
One may also consider semi-bounded flows by taking x2 = 00 or unbounded flows 
by taking z1 = - co and z2 = co. For given values of the wavenumber a one seeks 
the eigensolution (c,  y5) and hence the stability characteristics of dynamically 
similar flows specified by J ,  U(z) ,  N(z) ,  z1 and z2. A given mode is stable if and 
only if aci < 0, where c = c, + ic,. Moreover it is said to be damped if aci < 0, 
neutrally stable if ac, = 0 and marginally stable if in addition to aci = 0 there 
exist unstable modes a t  neighbouring values of the wavenumber and Richardson 
number. 

Here we examine all the modes, stable as well as unstable, seeking their overall 
features by numerical and analytic means. It is well known that the unstable 
modes, for each given pair of values of the wavenumber and Richardson number, 
are finite (possibly zero) in number, and may arise from the continuous spectrum 
as the Richardson number decreases. The literature suggests that the stable modes 
may be divided into four distinct classes for each pair of values of the wave- 
number and Richardson number: (i) those that are conjugate to the unstable 
modes, (ii) those that are marginally stable, (iii) those that are essentially internal 
gravity waves modified by the basic shear and (iv) those that are essentially 
inertial modes modified by buoyancy. The members of the first class are in one- 
one correspondence with the unstable modes and decay exponentially in time. 
The second class is finite and has eigenfunctions with branch points at the critical 
layers, where U(z )  = c.  The third class is discrete and has real eigenvalues c 
outside the range of the velocity distribution U ( z )  (providing the density 
decreases with height everywhere). The fourth class is continuous, has real 
eigenvalues within the range of U ( z )  and has eigenfunctions discontinuous at 
the critical layers (Eliassen, Heriland & Riis 1953; Case 1960). 

This overall pattern emerges from previous work on the unstable modes and on 
the continuous spectrum of stable modes. We analyse the overall pattern in $ 2. 
In  $ 3  we analyse the discrete spectrum of stable modes a t  large values of the 
Richardson number, giving asymptotic formulae for the values of c. These results 
are confirmed and extended down to smallish values of the Richardson number 

t This name was coined by Drazin (1958) in honour of the work of Taylor (1931) and 
Goldstein (1931) but in ignorance of the independent derivation of the equation by 
Haunvitz (1931). 
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in 5 4. Further asymptotic results, for small values of the Richardson number, are 
given in $ 5 .  These agree with the numerical results and fill in the picture of the 
discrete spectrum of stable modes. The unstable modes for a sinusoidal profile 
are used in $ 6  to illuminate the applicability of Howard's formula for perturba- 
tion of marginally stable modes. 

2. General theory 

intelligible if we consider those flows for which we have 
Although the essence of our methods below is quite widely applicable, it is more 

N 2 =  I ,  21 = -n, 2 2  = 7 ~ .  (3) 

We shall treat such flows principally but shall remark upon other density 
distributions and upon unbounded flows. 

First consider the behaviour in the limit as J -+ co, when the Taylor-Goldstein 
equation becomes 

where we define y = cfJ4. This gives the eigensolutions 

L$ 3 $"+(y-2-012)$ = 0, (4) 

c = fJ+, = +J4/(a2+&2).4, $ = $,, 3 s i n t n ( n + z )  for n = 1,2 ,  ... . ( 5 )  

This limit may be regarded as the limit of either infinite buoyancy or zero dimen- 
sional scale of the basic velocity. It gives the well-known discrete spectrum (5) of 
internal gravity waves (or a continuous spectrum if the channel is of infinite 
height). 

To express the problem in terms of a bounded operator so that standard results 
of spectral theory may be used, we next rewrite the Taylor-Goldstein equation 
without approximation in the form 

I$ = J-&X$, ( 6 )  

(7) where 

After some routine analysis (cf. Friedman 1956, chap. 3) i t  follows that 

X(z) = J ~ ( Y - ~  - (y  - U/J4)-2 + J- iU"/(  UfJQ -y)>. 

$(z') = J-4 G(z, z') S(z) $(z )  dz,  

where the Green's function is defined by 

sinp(n-z)sinp(n+z') for z' < z 6 n 
G(z, 2') = - -- 

sinp(n - z') sinp(n + z )  

and p by p = (y-2 - a2)3, (10) 

for - n < z 6 z 

provided that sin 2pn + 0. Equation (8) is expressed in terms of an integral and 
thus a bounded operator (unless c lies in the range of U ( z )  or p is half an integer). 

Now we may follow Dikiy & Katayev (1971), who applied spectral theory to 
a similar problem of barotropic instability. Applying their arguments to (8), and 
those surveyed by Drazin & Howard (1966) for the unstable modes and for the 
initial-value problem, we deduce the following picture. In  the limit as J -+ co for 
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fixed a and n, each mode is neutrally stable, belonging to the countable infinity of 
solutions (5). Some modes, however, may remain unstable as J -+ GO if a or n is 
not fixed (see for example Huppert 1973). For finite values of J there may also be 
a continuous spectrum of neutrally stable eigensolutions with c in the range of 
U(z )  (see for example the survey by Drazin & Howard (1966) of the work of 
Eliassen et al. (1953) on plane Couette flow). Solution of the initial-value problem 
by Laplace transforms seems to imply that the normal modes are both complete 
and independentt and that therefore when the continuous spectrum arises the 
discrete spectrum is decreased. This pattern of stable modes continues as J 
decreases to zero with a fixed, although the discrete modes may decrease in 
number as the continuous spectrum grows. However, some discrete unstable 
modes may arise from the continuous spectrum as J decreases so far that 
J / U t 2  < 2 somewhere. The marginal modes at the onset of instability are singular 
neutral modes with a branch point a t  the critical layer z = z,, where U(z,) = c. 
Finally, when J = 0, there is a finite number (possibly zero) of unstable modes, 
usually one for each point of inflexion of the basic velocity profile (Howard 
1964), and the continuous spectrum of stable modes. The discrete spectrum of 
stable modes must finally vanish in the limit as J -+ 0 but may remain for any 
positive value of J ,  however small (see $ 5  4 and 5). It should be noted also that the 
unstable modes are in one-one correspondence with conjugate damped modes. 

3. The internal gravity waves for large J 

that the expansions 
The integral form (8) of the problem implies (cf. Friedman 1956, p. 228) also 

y =yo+J-%yl+J-'y2+..., $ =$o+J-4$l+... (11) 

for each integer n converge for sufficiently large values of J .  We have already 
found yo and $o [equation ( 5 ) ] .  To find yl ,  $', y2, etc. it  seems easiest to revert to 
a differential equation. So we now rewrite the Taylor-Goldstein equation without 
approximation in the form 

Ln+ = $"+in2$ = {yo2-(y-  U/J4)-2-J-*U"/(y- U/J*)}$,  (12) 

expand in powers of J-4 and equate coefficients of J-4, J-1, etc. 
The coefficients of J-4 in (12) and the boundary conditions give 

L n  $1 = {27c3(y1 - u) -YO 1 
$1 = O  a t  z =  kn-. lU" $ O > I  

But by integration by parts and use of the boundary conditions we have 

Note that when there is no continuous spectrum the normal modes for given values of 
J and a will comprise two complete sets of eigenfunctions, say @(z) and +f)(z), corre- 
sponding to two eigenvalues, say ct '  and c:), in order to represent arbitrary initial pertur- 
bations of both the stream function and the density distribution. For the special case 
J = a, equation ( 5 )  gives cf' = - c z )  and $:) E $'," for all a, although these simple 
relations do not hold in general. 
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This identity and the equations for $o and g1 now give the solubility condition 
for $1, 

and thence y1 = m - l J I n  ( u + +yt u”) sin2 [ijn(m + z ) ]  ax. (16) 

To proceed further, let us take the particular basic velocity 

U =sin2 for -n- < z  < n-. (17) 

y1 = 0. (18) 

(19) 

Then (16) and (17) give 

Thence (13) becomes 

and with a little calculus we deduce that 

L, $1 = yo1( 1 - Zyc2) sin x sin +n(n + x ) ,  

- +ycl( 1 - 27~;~) ( x  cos + 4 sin &) if n = 1, i +(n+1)-1cos[(+n+l)z+tnm]) if n + 1. 
= +y;1(l-2y,2){(n-1)-1cos[(+n-1)z+&m] } (20) 

Next, coefficients of J-1 give 

} (21) 
‘n$2 = ( ~ Y O Y ~ - ~ U ~ + Y B U ~ )  $ o l y ~ + Y i 1 ( l - 2 ~ i 2 )  UA.9 

$ 2 = 0  at x = $ n - ,  

and the solubility condition for $2 thence gives 

Y Z  = i ~ d 2 + ~ m 2 )  (37,’- 1) +gro(2r~2-1)2/ (1-n2+Sn1),  (22) 

where S,, = 0 if m =I= n and S,, = 1 if m = n. 
Note that we have taken the limit as J + co for fixed n (and a). If, however, 

n increases sufficiently rapidly with J we anticipate that the nth mode may cease 
to exist in order that there be a finite number of modes for each value of J ,  however 
large (provided that a is fixed). 

Similar ideas to those in this section may be applied when N 2  varies with z, but 
one needs to know the appropriate soIution $o explicitly in order to invert the 
appropriately modified operator L,. One may also apply the ideas to unbounded 
flow provided that there are uniform densities a t  infinity, i.e. that N2 -+ 0 as 
z -+ c 00. (However, if N 2  -+ 1 as x -+ 5 co, for example, the expansion (11) of q5 
in powers of J-8 is not uniformly valid as z 3 5 03 and more refined methods are 
necessary.) 

We briefly substantiate these extensions below, considering the instability of 
unbounded flow with variable N 2  such that N 2  + 0 as z -+ 5 03. Then the required 
generalization of (12) can be seen to be 

L,$ = $“+(N2/yz -a2)$  = (N2 /y ; -N2 / (y -  U/J8)2- J-*U”/(y- U/J8)}$. 

Using expansions ( l l ) ,  we deduce that 

L,$,=O; $ o + O  as z + + o o .  (23) 



154 W .  H .  H .  Banks, P. a. Drazin and M .  B. Zaturska 

For a general given function N2(z) ,  we know $o and yo only in principle, but can 
proceed to infer that 

+ 0 ( 4  = 90(4 1" 402(z ' )  dz' 
0 

is also a solution of the equation L, $o = 0, although +o does not vanish as z -+ 

We proceed, much as we did before, to solve the system 
GO. 

(24) 
4% 91 = {2Y03N2(Y, - U )  - 76- "1 

q5+0 as z -+kco ,  lU +02} 

instead of ( 13). Applying the self-adjoint condition (14) with the range of integra- 
tion from x = -CO to z = GO, we find 

y1 = Jrn (N2U +$yiU")  q5 idz / j rn  --oo N29;d.z (25) 
--m 

instead of (16). One may go on to find 
if one knows yo and q50, and hence $o, explicitly. 

by the method of variation of parameters 

It so happens that, if 

N 2  = sech2z for -CO < z < CO, (26) 

it can easily be verified that 

yo = 2/{(2n- 1 + 2 ~ ) ~ -  I}*, q50 = sechdLzC$?+&tanhz) for n = 1,2,  ..., (27) 

where Ct?$ is the Gegenbauer or ultraspherical polynomial of degree n - I (cf. 
Abramowitz & Stegun 1965, chap. 22). This solution was found by Groen (1948), 
who incidentally derived a perturbation to estimate the change in yo due to the 
effects of the variation in density on the inertia of the fluid (which we have 
neglected from the start in the Taylor-Goldstein equation). This distribution (26) 
of the Brunt-Vaisala frequency corresponds to a mean density distribution of the 
form p = p0 exp ( - b tanh z) ,  which can, by judicious choice of the parameters 
po and b, describe fairly well many distributions met in practice. (One may also 
note that the above eigenfunctions q50 vanish at z = 0 i fn  is an even integer, and 
so are appropriate for semi-bounded flows over the domain z > 0.) The explicit 
solution (27) enables us to apply in detail the formula (25) to any unbounded 
flow with a well-behaved velocity profile. 

4. Numerical results for particular flows 
Taking the special basic flow with 

U =sinz, N2= I for - - 7 ~  6 x 6 n  (28) 

as an example, we apply the previous results. In  this way properties of a general 
flow will be illustrated. Here there is just one unstable mode, i t  being unstable for 
the parametric ranges 

0 < a2 < 2, 0 < J < (l-a2)*-1+a2 = J1(a) (29) 
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(cf. Huppert 1973, $2.1). This is shown in figure 14 of Hazel (1972). The eigen- 
solutions on the marginal curves are given by 

c = 0, 4 = (sinz)(l-a*+ on J = ~,(a), (30) 

and c = 0, 4 = (COB +z)**’(sin &)*?’ on a2 = 2, (31) 
where v = +(g-J)+.  

To fhd the discrete class of neutrally stable modes, namely the internal gravity 
waves modified by the basic shear, we first apply formulae ( 5 ) ,  ( I I ) ,  (18) and ( 2 2 )  
and find that Y ~ ~ - ~  = 0 for all positive integers m and that 

c = cn = ? J:(a2+tn2)-t{I+gJ-1[(2+6,,)(3y62-1) 

+ 2( 1 - 2 ~ i ~ ) ~ / (  1 - n2 + 4JI  + O( J-”} (32) 
as J -+ co for fixed a2 and n. 

We also solved the problem by direct numerical integration of the Taylor- 
Goldstein equation, using the shooting method to compute the eigenvalues and 
eigenfunctions for moderately wide ranges of a, J and n. The method adopted 
here was to use the results calculated from the asymptotic result (38) as trial 
values for large J .  It was then possible to proceed to smaller values of J by using 
the results predicted by (32) in conjunction with the numerical solutions obtained 
for larger values of J .  

Some typical characteristics of the modified internal gravity waves are shown 
in figures 1-3. It can be seen that formula (32) is quite accurate for n = I and 
a2 = 2, even when J is as small as 3. It can also be seen that c -+ 1 and a singu- 
larity at z = *zr develops as J -+ 0;t  this property, found for all modes examined 
by us, is analysed in the next section. Only the positive values of c have been 
shown, because there is symmetry between modes with positive and negative 
values of c. This symmetry of the flow (28) means that for each wave travelling 
in one direction there is a similar wave with equal but opposite velocity. It can 
be inferred by noting that the existence of an eigensolution (c,  $ ( z ) )  implies the 
existence of another ( - c,  #( - 2)). The integer n used to count the discrete 
eigensolutions ( 5 )  serves to count the eigensolutions for J < 00, giving the number 
of antinodes of the eigenfunction between the walls. Thus the nth eigenfunction 
has n- 1 zeros between the walls (at z = -t n-). 

On the basis of the numerical results corresponding to n = I, 2 and 3 for various 
values of J it  was conjectured that 

as J -+ 0. The n = 4 mode was then examined numerically near J = 0, and the 
results were consistent with this conjecture. 

c = 1 i- 2J/n(n + 2)  +o( J )  (33) 

As a second example we consider the stability of the jet given by 

U = sechzz, N 2  = sech2z for -00 < z < 00. 134) 

J = +a2(2-a) (3-a)  for 0 < a < 2, (35) 

The marginal-stability curve for the sinuous mode of this jet is given by 

on which 

integrations took longer to  perform. 

c = Qa, q5 = (sech z)“ (sech2 z - $~)(1-*~). 

t No numerical difficulties were encountered, although, for fixed u2, as J --f 0 the 
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0 1 2 3 4 5 6 7 8 9 1 0  

J 
FIGURE 1. Sinusoidal flow ( 2 8 ) :  c 218. J for n = 1 and various values of a2. 

---, numerical results. 

0 2 4 6 8 10 12 14 16 18 20 

J 

-- , numerical results; - - - -, large-J expansion. 
FIQURE 2. Sinusoidal flow (28) : c ws. J for n = 1, 2, 3 and a2 = 8.  

The curve for the varicose mode is given by 

J = a(t-a)(3-a)(3+a2)/9(1+a) for 0 < a  < 1, (36) on which 
c = (3  +a2) /3(1  +a), q5 = tanhz(sechz)a (sech2z-c)8(1-a). 

Proceeding as before, we find after using (25) to evaluate y1 in terms of beta 
functions that the velocities of the stable modes are given by 

as J -+ co for fixed u2 and n, where yo is given in (27). We note that, for a, n and J 
fixed, there are two non-trivial solutions, corresponding to the plus or minus sign. 

The Taylor-Goldstein equation was also integrated directly to compute the 
eigenvalues and eigenfunctions. Choosing a = 4, we obtained results for a 

c = C, = 5 yoJ4 + (1 - yg + (37; - 1)/(2a + 3)) + O( J-4) (37) 
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FIGURE 3. Sinusoidal flow (28) : G vs. u2 for n = 1 and various values of J 

number of values of J and n.? The procedure followed was that described earlier 
in this section, although behaviour according to the generalization (43) of (33) 
was anticipated in order to save computing time. 

Some of the numerical results obtained for 01 = 4 are shown in figure 4. It may 
be noted that all the positive eigenvalues [corresponding to the plus sign in (37)] 
for the &st three modes are greater than unity for J > 0, and that c J  1 as JJ. 0 
with a resultant singularity in the limiting form of the eigenfunction (this corre- 
sponding to the simple maximum of U = sech2z at z = 0). The negative eigen- 
values are also shown for the first three modes and we note that here c t 0 as J J 0; 
the singularity in this case arises a t  the minimum of U at z = f oc), although the 
minimum is not a simple one [so formula (43) is not applicable]. The values 
predicted by just the first two terms of the large-J expansion are shown in 
figure 4 for comparison. With the exception of the third negative eigenvalue, the 
agreement is again good, even for moderately small values of J .  The first two terms 
were further checked by calculating the positive and negative eigenvalues, say 
c*, for one large value of J and comparing c+ - c- with 27, J 4  and c+ -t c- with Zy,. 

5. The internal gravity waves for small J 
We found numerically that c -+ 1 as J --f 0 for the flow (28) (and inferred a 

similar solution for which c 3 - 1 as J -+ 0). To examine this analytically, first 
formally put J = 0 and c = 1 into the Taylor-Goldstein equation for the flow (28). 
Then one readily finds the solution with a singularity at z = &i-, namely 

9 = 4fI+AZfZ7 

t Certain results were also obtained with other values of' a, but since these are all 
consistent with the theory set out hero, they are not reproduced. 
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I 
3 -  

J 
1 2 - 4  5 6 7 8 9 1 0  

I - I -  - I- -[ - L -'- [ - -- - - _  n = 3  - - - - _  
n = 2  

-2 - 

F I G ~ E  4. Je t  flow (34): c us. J for n = 1, 2, 3 and a = +. -, numeric& results; - - - -, 
large-J expansion. (Where the results of the large-J expansion are close to the numerical 
results they are marked with a cross.) The inset is an enlargement of the lower quadrant 
near the origin. 

fJZ) = (1 - U)- tg ,  fi = (1 - U)-$g (1 - U)/g2dz,  s where 

g(z) = (a + 4) cos {(a - 4) (2 + *n)> + (a - &) cos {(a + +) (2 + in)), 
u =  +(l-aZ)f. 

At this stage it seems best to confme our attention to the special case a2 = 2 to 
illustrate more general behaviour, because then the above solution becomes so 
simple that we can explicitly satisfy the boundary conditions (2) to find 

} (38) 
.4 (1-U)- t ( l+(z+cosz) / (n++)}  for -n 6 z < in, 
B( 1 - U)-&(l- ( z  + cosz)/(m- 1)) for 4. < z < 7 ~ .  + = {  

Note that we have not related B to A because of the singularity a t  = &n, where 
U = 1. This singularity of the approximate solution (38) means that we face a 
singular perturbation problem and cannot simply expand the solution in powers 
of J .  

We may proceed to obtain a uniformly valid expression for qi as J $ 0  and c 3.1 
as follows. For fixed values J > 0 and c > 1 the Taylor-Goldstein equation (1) 
for the flow (28) has two complex conjugate critical layers a t  z = z,, given by 

These are the regular singularities of the equation. The theory of ordinary 
differential equations can readily be used to show that at each complex singularity 

Z, = 47~ & i c0sh-l C. (39) 

+ ,., (z - z,)& { o ( z  - zc)&1+4J/(ca-l))* + E(z - zc)-~1+4~/(C2-1))'} (40) 
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as z + z, for fixed J and c, independently of the value of a2, provided that the 
exponents do not differ by an integer. 

Matching solutions (38) and (40) in the limit as J -+ 0, and remembering that 
we have a real problem on the real axis, suggests that 

4 N E(c-U)- t  as z + g n  

and t - t {1+4J/ (c2- l ) } fr+-& as J-tO. 

and the uniformly valid eigenfunction 
This in turn gives c = 1 + $ J + o ( J )  (41) 

as J + 0. This argument is heuristic because (41) shows that the exponents in (40) 
differ by two in the limit as J 3 0. 

We note that the result (41) is consistent with the conjecture (33), and also that 
the solution (42) is confirmed by our numerical calculations for small J only for 
the case n = 1. However, for all larger values of n it  appears that we may regard 
(42) as an approximation as J -+ 0 which breaks down near z = Qn. We proceed to 
resolve the failure of (42) by regarding it as an ‘outer’ solution and investigating 
the ‘inner’ region in the immediate neighbourhood of z = in. 

We therefore suppose there is an eigenvalue such that c = 1 + E ,  where E 4 0 as 
J 4 0, and seek the behaviour of the possible solutions of the Taylor-Goldstein 
equation near x = 4;rr by introducing an ‘inner’ variable 5 such that z = in + Sc, 
where 6 -t 0 as J - t  0. The form of 6 is obtained by requiring a balance of appro- 
priate terms when substitution is made into (1) (with N 2  = 1 and U = sinx); we 
find that 6 = O(&) and e = O(J). We choose 8 = (2e)* for convenience. 

Anticipating the numerical results, we define a constant n such that 

E - 2J/n(n+2) 

as J + 0, and so the equation governing the structure near z = in- is 

Note that this equation does not contain a. 

becomes (1 -x2) $*% + 2nqhZ - (n - 1) (n -t 2) @ = 0. 

From this equation we see that there are solutions which behave like xn--l and 
xn+2 as x +- & GO. We shall see later that we require r$ = O(x-1) as x -t f GO and so 
must reject the solution @ beha~ingl ikex~+~ asx -f k co. This gives @ cc Ck-@(x), 
the uhraspherical polynomial (Abramowitz & Stegun 1965, chap. 22), and thence 

We can also use the equation for @ in terms of 5 to calculate $ directly for a few 

It is convenient to write x = i6 and @ = (1 + C2))an4 so that the equation for @ 

$ cc (1 + p)-*W:-?&C). 

values of n. We find that 

$1 (1 + 62)-*, $2 cc (1 + P9-l Y, 
$3 cc (1 + c?)-$ (C2 - $1, $4 cc (1 + c2r2 (C3 - g o .  

The function q5m appears to have n - 1 zeros in the interval - 1 < 6 < 1. 
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We conjecture that n must be a positive integer in order that # behaves like 
(5-1 a t  both 5 = -a and 6 = +a; the matching of # will be seen to give this 
behaviour, so that the eigenvalues of n are the positive integers on the basis of 
our conjecture. 

It remains to match this inner solution to the outer solution given in (42). From 
the latter we find 

But the inner solution gives 
(-l),a,/fS as (-+-a 

+n {a,,, as C-++oo 

for some constant a,. The matching of the two solutions is achieved by requiring 
that 

and so 

This relationship between A and B agrees with the results deduced from the 
numerical integrations. 

The inner solution derived above has been compared in detail with the 
numerical results and very good agreement obtained. This comparison included 
the positions of the zeros and the amplitudes of 9, in the neighbourhood of z = &r 
for n = 1 , 2 , 3  and 4 as J -+ 0. This leaves no doubt that the analysis describes the 
behaviour completely . 

The matching argument above can be seen to be independent of a and to depend 
upon the functions U ( z )  and N2(z)  only in the 'boundary layer'. Therefore the 
asymptotic eigenvalue relation can in fact be found similarly for any flow with 
an overall simple maximum or minimum of V(z),  say Urn a t  z = 2,. It is thus easy 
to show that 

c = Um-2JN&/{n(n+2) Uk}+o(J)  as J -+ 0 for n = 1,2,  ..., (43) 

where N ,  = N(z,) and U k  = U"(z,). However, the eigenfunction, and higher 
terms in the expansion of c for small J ,  depend upon a and more details of the 
structure of the functions U(z )  and N(z).  This generalization (43) as J + 0 was 
verified numerically by considering (i) the n = 2 and n = 3 modes with U = sin z 
for a2 = 0.1 and 2.0, (ii) the effect of changing from N 2  = 1 to N 2  = sin2z, and 
(iii) the n = 1,2, and 3 modes for 0 = (z/n) (1  -z2/n2), N2 = 1 and a2 = 0.1. 
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Our numerical results for the jet (34 )  verify further the universality of the 
formula (43 ) .  They also suggest that (c- U,)/J + constant as J.10 for fixed a 
and TI,, where Urn = 0, although this minimum of the velocity profile a t  infinity is 
not a simple one. 

To investigate this we again use the method of matched asymptotic expansions. 
For the particular jet (34 )  it is convenient to define T = tanhx. Then 

u = f l 2  = 1-T2 

and the Taylor-Goldstein problem becomes 

$ = O  at T = k I .  (45) 

For the outer solution over the region - 1 < T < 1 we put c = J = 0 formally, 
and derive the outer equation 

d 
( 1  - T2)  ( ( 1  -T2) -a2$,+2(1 - 3T2) $0 = 0. 

This has general solution in terms of hypergeometric functions 

$o = A(l -T2)rP(3+2r ,2r-2;  1+2r; + - + T )  
+ B ( l  - T2)+P(3 - 2r, - 2r- 2 ;  1 - 2r;  4- $T), 

where r = + (1 + &x2)* and A and B are arbitrary constants. 
It is convenient to reduce the domain of the problem to the half-interval 

0 < T < 1 by imposing a symmetry condition at T = 0. This is possible for any 
problem for which U and N 2  are even functions. Thus for a sinuous or even mode 
(n odd) we require d$/dT = 0 at T = 0. 

This can be shown at length to give 

B, 
( r+  1) (2r+ 1) 
(r - 1 )  (2r  - 1 )  

A = 2-4r ( 4 7 )  

after use of several formulae for the hypergeometric and gamma functions (see, 
for example, Abramowitz & Stegun 1965, chaps. 6 ,  15).  Similarly, for a varicose 
or odd mode (n even), we require 

$ = O  at T = 0 ,  

and find 

An inner solution is needed because the outer solution is singular near T = 1 .  
Examination of the balance of terms in the Taylor-Goldstein equation (44 )  for 
small J and 1 - T but for fixed a > 0 and J /c  suggests that a suitably stretched 
inner variable may be defined by t = 2( 1 - T)/c .  Then the inner equation can be 

I1 F L M  75 
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Any solution of this equation which vanishes at t = 0 (i.e. T = 1 or z = 00) has 
the form 

q5$ = D ( - t ) 3 a ( i - t ) ~ f t s ~ ( B a + : + : s + r , : a + ~ + ~ s - r ;  l+a; t )  

for some constant B of normalization, where s = + (1 - J/c)J .  In  our numerical 
work we chose to  normalize such that q5 N (1 - T ) b  as T +- 1, and this gives 

D = (50) 
The matching condition is that 

lim q50 = lim di. 

This gives, after use of a connexion formula for the hypergeometric functions of 
q5i and of the poles of the gamma function, both the eigenvalue relation 

s = 2 j + l + a + 2 r  for j = 0 ,1 ,2  ,..., 
and the eigenfunction by means of the formula 

T-tl t+- m 

+ o ( J )  as J J . 0  for fixed a > 0, 
J 

(2j+ 1 +a)2+ 3 +a2+ 4(2j + 1 +a) r 
c = -  

(52) 
where j = &(n- 1) for a sinuous mode and j = $(n - 2) for the next higher 
varicose mode. Thus each value of j gives the same value of lim c/J for the pair of 

modes. The eigenfunctions of the pair of modes do differ, however, with 
J-0 

for the varicose modes. 
The inner solution here has again been checked against the numerical results 

and very good agreement found. The comparison with the numerical results 
included not only a direct check on the eigenvalue relation (52) but also a com- 
parison of the values of q50 and dq5,/dT as given in (53) and (54) for the sinuous 
and varicose modes respectively. 

6. The applicability of Howard’s perturbation formula 
The example (28) of a sinusoidal flow offers an opportunity to consider a 

general aspect of the theory of unstable modes. As for many examples, the 
stability boundary for the flow (28) has been found analytically. Further, Howard 
(1963) derived the general formula 

(&/aa2), = lim (lo/ll) (55) 
C t l O  
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to perturb the marginal-stability characteristics, where 

exp (in-i - +mi) ( &ci)4-v 
CD- = ( - sin 4x)i-v (cos +z) 4+v for - n- < z < 0, 

Vn- 

$ N < $o = (&i)l-”&~/vn- near x = 0, 

exp ( f n - i  - gnvi )  (+c,)t-v 
CD+ = (sin +)4+ (cos +z)i+v for 0 < z < n, 

Vn- 
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> 

So much has been related by Huppert (1973), who went on to question the validity 
of Howard's formula in various cases. For one of these cases, Banks & Drazin 
(1973, $5 )  resolved the singularity where Howard's formula gives ac/8az =a 
because in fact c N constant x (a: - a2)i as a2 f a: for a fixed value of J such that 
c(a,, J) = 0. Here we show that the detailed structure of the eigensolution may be 
required if one or both of the integrals I, and Il is zero or infinite, or if there is a 
critical layer near a boundary. The singular nature of the perturbation must be 
recognized. 

Thorpe's eigensolutions for flow (28 )  are given by (31). Huppert (1973) applied 
the Howard formula (55) to derive 

ac/aa2 = T 2 ~ i  on a2 = $ (57) 

essentially, and pointed out that the lower sign gave results in conflict with 
numerical evidence. 

We are unable to recover Huppert's results (57), finding instead that I,, is 
infinite in the limit as ci J. 0, whereas 

I, = T 227ivef"~~, Ill = nefnvi. 

The difficulty in the evaluation of I;, is that there are three critical layers, two 
of which are near the walls. Therefore, to estimate the integral 112 asymptotically 
as ciJ. 0 we used the method of matching to derive the following solution as 
a2t $ ( J  =k t): 

asymptotically. Note that the upper signs in the solutions (31) have been taken 
to give the outer solutions OF because it is not possible to match the solutions 
with the lower signs; also we have renormalized the solutions (31) such that 
d$ldz = n--1 at z = - 7 ~ .  It seems essential to use the two terms in each of the inner 
solutions & for the critical layers near the walls. 

11-2 
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It can now be shown that the dominant contribution to the integral I,, as ci J. 0 
comes from the two inner solutions near the walls and that 

I,, -4 -ie-zv*isin (2vn)/n2J as ci J. 0. (59) 

For fixed J 9 0 or &, I,, dominates I,, in the limit as ci J. 0, although i t  transpires 
that as J decreases the contribution from Ill becomes relatively more important 
for fixed a2 near 2 and the term I,, must be retained. It follows from formula (55 )  
t ha t  

and therefore the equation determining ci is 

ci + 2vn-Isin 2vn(&i)2v = 2v($ - a,) as a2 f $. (60) 

Equation (60) gives 

ci - 2{n(Q - a2)/sin Znv)l'zv as a2 f 2 if Y + 0 or Q, 

although in some of the cases where numerical results were obtained the contribu- 
tion from the first term on the left-hand side of (60) was significant. The logical 
justification for the result (60) is poor, because Howard's formula ( 5 5 )  is derived 
on the basis of a regular perturbation. However, our numerical results, found by 
direct integration of the eigenvalue problem, support (60) as will be seen from 
table 1, where ci is tabulated for a2 = 0.749 at various values of J .  When J is close 
to & a transcendental singularity seems to develop; in fact our numerical results 
lead us to conjecture tentatively that 

ci N A exp { - B(2 - a2) - 3 (& - J)- i )  as a2 f 2, J .T. 8, (61) 

for some constants A and B. 
We may note here that certain of the eigenvalues were calculated using the 

Howard equation [Howard 1963, equation (lo)] for H = ( U -  c)"-l$, where n is 
evaluated from the relation n(1 -n) Ul,, = J N 2  and the subscript c indicates 
evaluation at the critical layer near x = 0. For eigenvalues calculated near the 
singular neutral modes this method reduced computation time considerably 
since the most important singular-like behaviour in $ is removed. Confirmation 
of the behaviour of I,, as given by (59) was obtained independently by evaluating 
I,, numerically for J = 0.23,0.1875 and 0.1 with a2 = 0-749; very good agreement 
was found for each value. 

On the other branch of the marginal curve (29), where the eigensolution is given 
by (30) for 0 < a2 < Q, our numerical results are consistentt with the Howard 
perturbation formulae as evaluated by Huppert [1973, equation (2.4)]. 

t The weak phrasing here arises because of the behaviour of c near J = J1: the numerical 
results are highly suggestive of a singular second derivative of c with respect to  J (or a2 
of course), so that the approach of ac/aJ to the Howard value as J f J1 is of cusp form. This 
could arise because of the occurrence of a term like (J1 -J)" in ac/aJ near J = J1, where 
0 < p < 1, although other possibilities clearly exist and no special computations were 
performed to seek the nature of this singularity. 
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J 0.02 0.10 0-16 0.20 0.23 

numerical 9-32 x 5.09 x 1.05 x 5-04 x 6.76 x 4 equation (60) 9.34 x 5-11 x 1.06 x 5-20 x 6.90 x 

TABLE 1. Comparison of numerical and analytical results for ci for a2 = 0.749 

7. Discussion 
It should be noted that the result (43) for small values of the Richardson 

number is widely applicable, but only to flows with a simple maximum or mini- 
mum. This suggests that the spectrum of modified internal gravity waves for 
monotone velocity profiles may be qualitatively different. However, the results 
of Miles (1967) for a particular monotone semi-bounded flow with a particular 
density distribution disagree with the precise form of (43), although the results 
for small values of J are qualitatively similar. 

The numerical results of $5  which led to our finding modes for which c -+ 1 as 
J + 0 came as a surprise to us, because at fist sight they seem at variance with 
the conclusions of $ 2. The numerical and asymptotic analysis of $ 5 suggests that 
there are two infinite complete sets of modified internal gravity waves as J --f 0, 
which are, plausibly, the continuation of the complete sets which were found in 
3 3 as J -+ 00. The asymptotic analysis offers no proof of this, however, because it 
is valid as J -+ 0 only for fixed n. 

This leads us to re-examine the basis for the conclusion of $ 2 that there is only 
a finite number of modified internal gravity waves for each finite value of J .  This 
conclusion was based upon the general spectral theory used by Dikiy & Katayev 
(1971) and upon what treatment of the initial-value problem there is in the 
literature. Further, Eliassen et al. (1953; cf. Drazin & Howard 1966) found the 
continuous spectrum for the specific case of plane Couette flow, unbounded, 
bounded and semi-bounded, there being no discrete modes when 0 < J < f V 2 ;  
however, this result is for a basic flow which has neither a simple maximum nor 
a simple minimum in the field of flow. Other authors have found various isolated 
stable modes, with c in the range of U ( z ) ,  for various basic flows (see, for example, 
(30) with a2 > 8) .  

It would seem that the assumptions of these arguments need to be questioned. 
In  particular, a more thorough examination of the initial-value problem is 
required in order to resolve the issue, because the normal modes for the singular 
equation may not be independent. Moreover, the initial-value problem is not 
very well understood in view of the meagre treatment it has been given. There is 
also a practical and theoretical need to relate the stability characteristics for 
inviscid non-diffusive fluid to those for a slightly viscous and slightly diffusive 
fluid. 

The details of the example of 3 6 were examined less for their own sake than to 
show with what caution Howard's formula should be used, just as $ 5  was 
directed towards the generality of formula (43). Indeed, the instability discussed 
in $ 6 shows that the internal gravity waves with velocities (33) are unlikely to be 
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observed in practice because they would be overwhelmed by turbulence. How- 
ever, for flows which are stable when J > 0, the internal gravity waves with 
velocities (43) would not be obscured by any instability and so would be 
observable, particularly when a source, such as a rigid body, moves at the 
maximum or minimum velocity of the mean flow. 

The bulk of the work of P. G. D. was performed under the Advanced Study 
Program of N.C.A.R., which is sponsored by the National Science Foundation. 

Addendum 
After this paper had been accepted for publication another class of flows was 

investigated in the same spirit as indicated above. We considered those basic 
flows in which the overall maximum or minimum value of the velocity occurred 
a t  the boundary (with non-zero shear there). As a typical case we examined the 
characteristics of the flow defined by 

U(x)  = x 3 - x ,  iV2 = 1, - 2  < x < 2, for a =  1 

by numerically integrating the Taylor-Goldstein equation as outlined above. 
The large-J analysis generated by the modified form of (5) etc. of $32 and 3 

was again used. The first two modes were evaluated for large values of J and 
then with successively smaller values until evidence of a singularity was found. 
The results of these integrations are shown in figure 5, where we have displayed 
values of U (  - 2) - c = - 6 - c for various J (only the positive eigenvalues are 
shown). We again found that for large values of J the behaviour predicted by 8 3 
is confirmed.? 

For the first mode we found that the singularity occurs at J + 25.6. No special 
calculations were done to evaluate this critical value of J very accurately, 
although we are satisfied that it is correct to three significant figures, and that 
U (  - 2 )  - c vanishes algebraically. We presume that for J less than this critical 
value all modes belong to the continuous spectrum. For the second mode, how- 
ever, no critical value of J could be found numerically, a t  least not by the method 
we have used, because of the very rapid approach to zero of U(  - 2) - c :  the 
numerical results strongly suggest an exponential decay as may be inferred from 
figure 5 .  

In  the light of these remarks we may anticipate that, for a general distribution 
U ( z )  in the interval (xl,zz) with U, = U(z,) < U ( z )  and U ;  = U’(x,) > 0, cnf U ,  
as J 4 J, for n = 1,2, . . . , where the problem determining J, = J,(a) will be posed 
later. With this as the basic hypothesis we proceed to construct a uniformly 
valid approximation as c, f U, and J 4 J,. 

t Since the chosen U(z )  is an odd function it follows that y1 = y3 = ... = 0, and al- 
though yo is easily found we have not attempted to evaluate yz analytically. However, if 
we assume c = aJ&+ bJ-* and evaluate a and b by using those values of c found numerically 
for two large values of J ,  we find that for both the first and the second mode the resulting 
values of a agree very closely with those given by yo from the modified form of ( 5 ) .  For 
comparison we also plot c = aJ& + bJ-* in figure 5 for both modes. 
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0 20 40 60 80 100 
J 

FIGURE 5. U ( z )  = z3 - 2, Na = 1, - 2 < z < 2 :  U( - 2 )  -c, 'us. J for the first two modes 
with a = 1. -, numerical results; ---, c = aJ++bJ-+ (see text). 

Thus we formally put c = U, into the Taylor-Goldstein equation to derive 
the outer equation, 

( U - V,) (4; - - U"q50 + JN2q50/( U- U,) = 0, (62) 

which is non-singular for z1 < z < z2. The boundary condition 

q50 = 0 a t  z = z 2  (63) 

specifies #o uniquely except for an arbitrary constant of normalization. 
Examination of the balance of terms of the Taylor-Goldstein equation near 

the singularity z = z1 of the outer equation with U - U, - U;(z - zl) suggests that 
we choose the inner variable as 2 = U;(z - q)/( V, - c) .  Thus in the limit as c f U, 
for fixed 2 and J we derive the inner equation, 

d2#i JN! 
( Z +  l)zm+-q5i = 0, U;z 

where Nl = N(zi). The inner solution must vanish a t  z = 2,; it  is also convenient 
to normalize such that d&/dz = 1 at z = z,. These conditions give the unique 
inner solution 

u c  q5. = ~ ( z + l ) 4 { ( 2 + 1 ) ~ - ( Z + l ) - - Y } ,  
2vu; 

where we define v = ($- JNq/U;z)*. 
To match #o and q5i we first take the inner limit as z .$ z1 of the outer solution. 

Although we cannot in general express q50 in terms of well-known functions, the 
theory of ordinary differential equations gives 

#o N ( z  - zl)* {A(z - ZJ-Y + B(z - Z,)--Y> as 4 z1 
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for some constants A and B whose ratio is determined uniquely by the outer 
problem (62) with (63). The matching depends crucially upon whether v is real 
or pure imaginary. First consider the case J < $Ui2/N; and take v > 0 for definite- 
ness. Then 

Therefore matching lim q50 = lim #i, we require that 
z & z l  Z t m  

and B/A = 0 to this order. 

It follows that 

In  this case of real v, we see that (62), (63) and (66) pose a singular Sturm- 
Liouville problem to determine the limiting eigenvalues J as c 1‘ U, for any fixed 
value of a. There is a finite number (possibly zero) of these values J < &Uiz/Nf, 
say J,, J,, . . . , Jp. Further, if 01 is sufficiently large then the solution q50 is exponen- 
tial in character, so that p is certainly zero. 

To find how c +  U, as J J .  J, we must go to a higher approximation. Now, on 
expanding A and B in powers of J - J,, since we may expect both to be regular, 
the outer solution can be put in the form 

+(J-J,)B,(z-z,)-~~.)+O(J-J,)~ as zJ.zl, J J J , ,  

where vn = + (g- J,N;/Ui2)4. Then matching with the outer limit of the inner 
solution (65) gives 

U, - c N U;{ - B,( J - Jn)}1’2Vn as J 4 J,, (67) 

for some B, determined only by the outer problem. 
We note here that the numerical results are consistent with the formula (67) 

with J1 + 25-6 for the first mode only (i.e. p = 1). The critical value J1 = 25.6 
was found by plotting the curves log (J- 4) against log (U, - c) for various values 
of J1 and choosing J1 by requiring the curve to be a straight line.? 

Second, we consider the case of pure imaginary v, i.e. J > tUi2/N2,. It is 
convenient then to define p = +(JN;/Ui2-$)* and rewrite the inner solution 
(65) as 

(68) 4. = - ul -c(z+i ) l s in{~log(Z+ 1)). 
* PUi  

t We may note that for U = z s - z  with a = 1 only one mode exists with v real, al- 
though further numerical work suggests that for a < a* where a* > f two modes exist 
with v real. 
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Therefore 

lim +i - v,-C Z+ sin { p  log Z> 
zt., Pu; 

sin{plog (z-zl)}cos 

- cos & log ( z  - 2,)) sin 

Examination of q50 as x J. z1 reveals that p J. 0 in order that matching may 
sible. Then we find 

lim +o - (z  - zl)l {A’ + B’ log (z - z,)}. 
ZJ. 51 

where A’ = A +B and B’ = ip ( A  -B) ,  and deduce that 

B’ = ( ~ ) + c o s ( p l o g ( ~ ) ] .  

t a n ( p l o g ( F ) )  N -B‘ PA’ as ~ J . o ,  

i.e. c-U,N-De-’B1pas,!6$0 for j= I , &  ..., 

Therefore 
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be pos- 

(69) 

where D = U;e-*‘/E. Thus we identify j = n -p ,  noting that formulae (67) and 
(69) describe how all the modes approach Ul from below. 

The result embodied in (69) is again consistent with the numerical results 
obtained for the second mode. This was achieved by calculating n-lplog (Ul-c) 
for smaller and smaller values of p and thence confirming that this quantity 
was tending to - i as required by (69). 

In  addition to the confirmation given above, the universal results (67) and 
(69) are exemplified by H~iland’s (1953) work on plane Couette flow, 

U=z, N 2 = 1  for O , < z i l .  

He found a solution which can be written as 

a2 = 0, c = - I/(ennIp- 1)  for n = 1,2,  ... . 

Now one can readily show that p = 0 for all a for this flow, so formula (69) is 
applicable with Ul = 0; this is consistent with H~iland’s result, which gives 
D = i for a = 0. Further, for a = 1, numerical calculations of Davey & Reid, 
who have kindly told us about their work on the stability of plane Couette flow 
of viscous stratified fluid in advance of publication, are also consistent with (69). 

Por the basic flow 

U =  l-e-z, N2 = e-z for 0 < 2 < a, 
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Miles (1967) found the complete solution in terms of hypergeometric functions. 
His solution in our notation can be shown to give p = 1 for a < 2 with 

(J- JJ r(i +2a) r(2v1) 

and v1 = (1 + a2)* - a - i. For 01 > 2, p = 0. From his results it can also be deduced 
that 

This agrees with (69), when D = exp ( - l/vl) and j = n if a > Q but j = n - 1 if 

Finally we may look back over our asymptotic results and recognize that the 
arguments justifying ( 5 ) ,  (27),  (32) etc. seem to apply only when J/n2 is large, 
that those justifying (43) apply when E = 2J/n(n + 2 )  rather than J is small, and 
that those justifying (69) apply when p/j rather than p is small. (Note that the 
matching of inner and outer solutions has depended essentially only upon the 
assumption that c -  U(z,) is small, where z = z, is the position of the critical 
layer.) This suggests that our results for large J are invalid when J/n2 is not large 
but that those for small J or p are also valid when J/n2 or p/n is small although 
J or p may not be small. 

a < g. 
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